

### Produktmerkmale

Der Schalungsbausatz "ISORAST" ist aus den folgenden Elementen zusammengesetzt:

- Standard-Schalungselemente,
- Sonder-Schalungselmente,
- Schalungselemente mit erhöhter Schalldämmung,
- Sonderelemente und
- Zubehörteile

siehe Abschnitte 1., 2., 3., 4. und 5.

## 1. Standard-Schalungselemente

Die Standard-Schalungselemente (zusammengesetzt aus EPS-Schalungswandungen und EPS-Abstandhaltern (Typ 1) bzw. Draht-Abstandhaltern (Typ 2)) entsprechen den Informationen und Zeichnungen der Anhänge A3.1 und A4.1 bis A4.2.

Die folgenden Standard-Schalungselementtypen sind vorhanden:

Tabelle A1: Wanddicken der Standard-Schalungselemente

| Тур           |             | gemäß         | Wanddicke | Kernbeton-  | Dicke der EPS-<br>Schalungswandungen |                                      |       |       |
|---------------|-------------|---------------|-----------|-------------|--------------------------------------|--------------------------------------|-------|-------|
|               | Тур         |               | Anhang    | Anhang [mm] | uioke                                | innen                                | außen |       |
|               |             |               |           |             | [mm]                                 | [mm]                                 | [mm]  |       |
|               | =           | 25 cm-Element | А3        | 250,0       | 140,0                                | 55,0                                 | 55,0  |       |
|               | EPS (Typ 1) | 31 cm-Element |           | 312,5       |                                      |                                      | 117,5 |       |
|               |             | 37 cm-Element |           | 375,0       |                                      |                                      | 180,0 |       |
|               |             | 43 cm-Element |           | 437,5       |                                      |                                      | 242,5 |       |
|               |             | 25 cm-Element |           | 250,0       |                                      | 320                                  | 55,0  |       |
|               |             | 31 cm-Element |           | 312,5       | 140.0                                |                                      |       | 117,5 |
| ter           |             | 37 cm-Element |           | 375,0       | 140,0                                |                                      | 180,0 |       |
| dha           |             | 43 cm-Element |           | 437,5       |                                      |                                      | 242,5 |       |
| Abstandhalter | 5           | 055-203-055   | 312,5     |             | 55,0                                 |                                      |       |       |
| Ab            | (Typ        | 055-203-118   |           | 375,0       | 202.5                                | 55,0<br>180,<br>242,<br>55,0<br>117, | 117,5 |       |
|               | Draht (Typ  | 055-203-180   | A4        | 437,5       | 202,5                                |                                      | 180,0 |       |
|               | ۵           | 055-203-243   |           | 500,0       |                                      |                                      | 242,5 |       |
|               |             | 055-265-055   |           | 375,0       |                                      |                                      | 55,0  |       |
|               |             | 055-265-118   |           | 437,5       | 265,0                                |                                      | 117,5 |       |
|               |             | 055-265-180   |           | 500,0       |                                      |                                      | 180,0 |       |
|               |             | 055-265-243   |           | 562,5       |                                      |                                      | 242,5 |       |

Die Ober- und Unterseiten jeder EPS-Schalungswandung sind profiliert, um eine formschlüssige dichte Fuge auszubilden (siehe Anhänge A2 bis A4).

Die Oberflächen sind im Allgemeinen glatt. Die Innen- und Außen-Oberflächen der EPS-Schalungswandungen weisen konisch geformte, vertikal verlaufende Rillen auf.

| ISORAST         |                            |
|-----------------|----------------------------|
| Produktmerkmale | Anhang A1<br>Seite 1 von 3 |
|                 |                            |



Diese elementhohen Schwalbenschwanz-Rillen auf der Innen-Oberfläche stellen die mechanische Verbindung zwischen den EPS-Schalungswandungen und dem Kernbeton her (siehe Abschnitt 3.4.1) und formen zusätzlich einen Anschluss für die Endstücke.

Die vertikalen Enden der EPS-Schalungswandungen formen eine dichte Fuge. Um diese vertikalen Fugen zu versiegeln und um, falls erforderlich, Differenzen auf Grund von Unebenheiten der Bodenplatte/Fundament auszugleichen, ist Dichtungsschaum zu verwenden.

Die Standard-Schalungselemente werden trocken in senkrecht versetzten Fugen (Mauerwerksverband) verlegt.

Die Schalung muss während des Betonierens ausgerichtet und abgestützt werden (siehe Anhang B7).

Das System kann für gerade, bogenförmige und abgewinkelte (135°-Winkel) Wände verwendet werden.

Die Standard-Schalungselemente greifen im Verband ineinander und werden sowohl in horizontaler als auch in vertikaler Richtung zu einer dichten und stabilen Schalung zusammengesetzt. Durch das Ausbetonieren der Standard-Schalungselemente wird anschließend eine Wand ausgebildet. Die Schalung wird für die Konstruktion von unbewehrten Betonwänden zusammen mit Beton der Festigkeitsklasse C16/20 (gemäß EN 206) oder für die Konstruktion von bewehrten Betonwänden zusammen mit Beton der Festigkeitsklassen im Bereich von C20/25 bis C50/60 (gemäß EN 206) verwendet.

Die EPS-Schalungswandungen werden aus expandiertem Polystyrol (EPS) EPS-EN 13163-T(1)-L(2)-W(2)-S(2)-P(5)-DS(70,-)3-BS200-DS(N)5-TR100 gemäß EN 13163 hergestellt, das aus Polystyrol-Partikelschaum mit Graphit (NEOPOR ® 2400 hergestellt von BASF) aufgeschäumt wird.

Die Rohdichte  $\rho$  des expandierten Polystyrols beträgt mindestens 24,5 kg/m³ und höchstens 29 kg/m³ bzw. im Mittel 27 kg/m³.

Der Nennwert der Wärmeleitfähigkeit des expandierten Polystyrols beträgt 0,032 W/(m×K).

Der Nenndurchmesser der Abstandhalter aus Stahldraht (Draht-Abstandhalter (Typ 2), siehe z. B. Anhang A4.1) muss mindestens 4,95 mm betragen.

Die in den Anhängen A3.1 und A4.1 bis A4.2 nicht genannten Materialeigenschaften, Abmessungen und Toleranzen der Standard-Schalungselemente sind der technischen Dokumentation<sup>1</sup> der ETA zu entnehmen.

### 2. Sonder-Schalungselmente

Die Sonder-Schalungselemente entsprechen den Informationen und Darstellungen in den Anhängen A3.2 und A4.2 bis A4.4. Die Sonder-Schalungselemente umfassen:

- Innenwand-Endelemente,
- Bogenelemente,
- Bogenanschlusselemente,
- Innenwandelemente,
- Eckrundelemente,
- Kragelemente und
- Erkerelemente.

Die Sonder-Schalungselemente werden in der gleichen Art und Weise wie die oben beschriebenen Standard-Schalungselemente ausgebildet, siehe Abschnitt 1.

Die Sonder-Schalungselemente bestehen aus EPS und EPS-Abstandhaltern (Typ 1) bzw. Draht-Abstandhaltern (Typ 2), dem gleichen Material der Standard-Schalungselemente, das in Abschnitt 1 beschrieben ist.

Die technische Dokumentation der ETA ist beim Deutschen Institut für Bautechnik hinterlegt und wird, soweit dies für die Aufgaben der an dem Verfahren der Bewertung und Überprüfung der Leistungsbeständigkeit beteiligten notifizierten Stellen bedeutsam ist, diesen ausgehändigt.

| ISORAST         |                            |
|-----------------|----------------------------|
| Produktmerkmale | Anhang A1<br>Seite 2 von 3 |



## 3. Schalungselemente mit erhöhter Schalldämmung

Die Schalungselemente mit erhöhter Schalldämmung entsprechen den Informationen und Darstellungen in Anhang A5.

Die Schalungselemente mit erhöhter Schalldämmung werden in der gleichen Art und Weise wie die oben beschriebenen Standard-Schalungselemente ausgebildet, siehe Abschnitt 1.

Die Schalungselemente mit erhöhter Schalldämmung bestehen aus EPS und Draht-Abstandhaltern (Typ 2), dem gleichen Material der Standard-Schalungselemente, das in Abschnitt 1 beschrieben ist.

#### 4. Sonderelemente

Die Sonderelemente entsprechen den Informationen und Darstellungen in den Anhängen A6 bis A8. Die Sonderelemente umfassen:

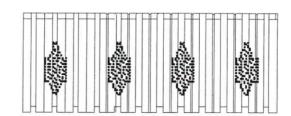
- Innentürsturzelemente
- Sturzelemente.
- Deckenabschlusselemente und
- Rollladenkastenelemente.

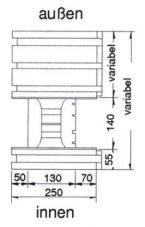
Die Sonderelemente werden in der gleichen Art und Weise wie die oben beschriebenen Standard-Schalungselemente ausgebildet, siehe Abschnitt 1.

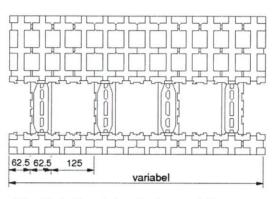
Die Sonderelemente bestehen aus EPS und EPS-Abstandhaltern (Typ 1) bzw. Draht-Abstandhaltern (Typ 2), dem gleichen Material der Standard-Schalungselemente, das in Abschnitt 1 beschrieben ist.

### 5. Zubehörteile

Die Zubehörteile entsprechen den Informationen und Darstellungen in den Anhängen A9 und A10. Die Zubehörteile umfassen:

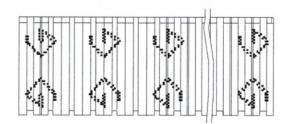

- Endstücke mit EPS-Abstandhaltern (Typ 1),
- Endstücke mit Draht-Abstandhaltern (Typ 2),
- gerade Höhenausgleichsstücke und
- Höhenausgleichsstücke für Erker- und Eckrundelemente.

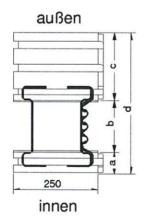

Die Zubehörteile bestehen aus EPS, dem gleichen Material der Standard-Schalungselemente, das in Abschnitt 1 beschrieben ist.

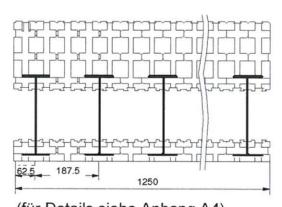

| ISORAST         |                            |
|-----------------|----------------------------|
| Produktmerkmale | Anhang A1<br>Seite 3 von 3 |



Typ 1: mit EPS-Stegen



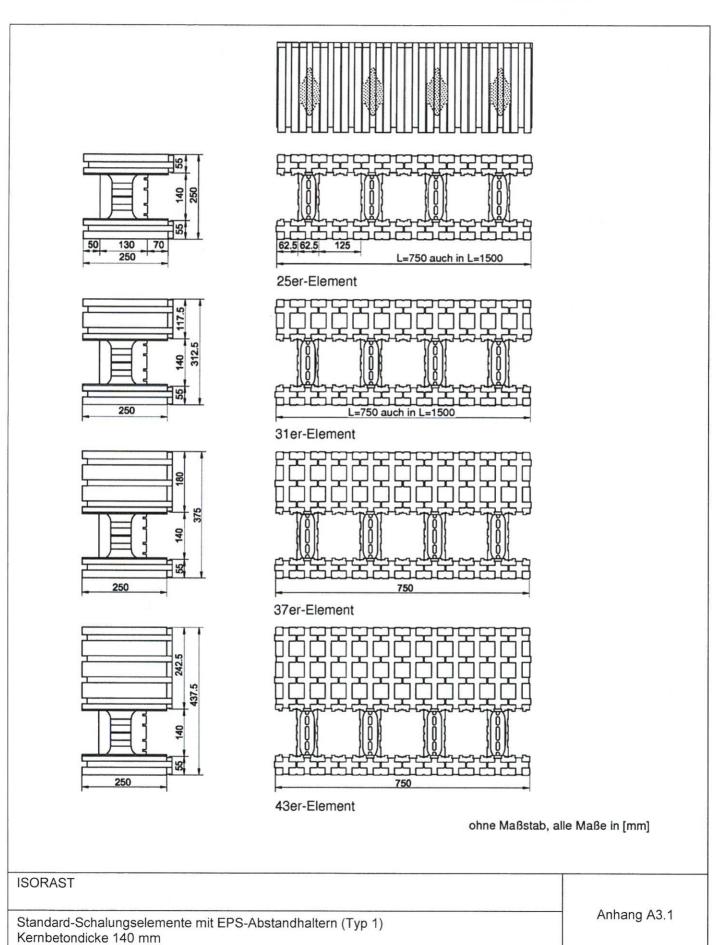



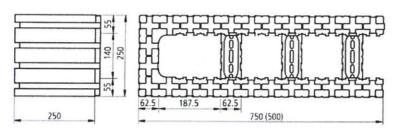

(für Details siehe Anhang A3)

Typ 2: mit Draht-Stegen

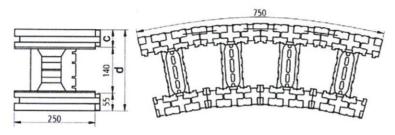




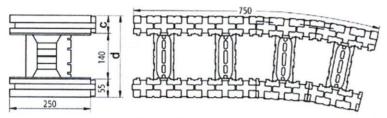




(für Details siehe Anhang A4)

**ISORAST** 


Übersicht der Standard-Schalungselemente mit EPS-Abstandhaltern (Typ 1) bzw. Draht-Abstandhaltern (Typ 2) (Schematische Darstellung der Schalungselemente aus EPS) Anhang A2



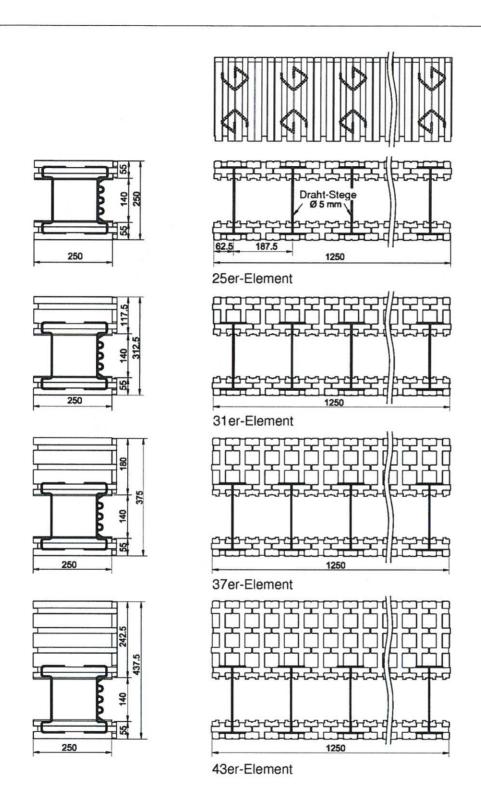





25er-Innenwand-Endelement



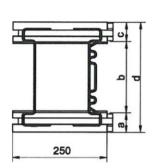
Bogenelement

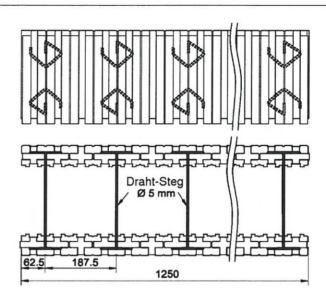



Bogenanschlusselement

| Тур                        | c [mm] | d [mm] |  |
|----------------------------|--------|--------|--|
| 25er-Bogenelement          | 55.0   | 050.0  |  |
| 25er-Bogenanschlusselement | 55,0   | 250,0  |  |
| 31er-Bogenelement          | 447.5  | 312,5  |  |
| 31er-Bogenanschlusselement | 117,5  |        |  |
| 37er-Bogenelement          | 100.0  | 075.0  |  |
| 37er-Bogenanschlusselement | 180,0  | 375,0  |  |
| 43er-Bogenelement          | 040.5  | 407.0  |  |
| 43er-Bogenanschlusselement | 242,5  | 437,0  |  |

| ISORAST                                                                                                                     |             |
|-----------------------------------------------------------------------------------------------------------------------------|-------------|
| Sonder-Schalungselemente mit EPS-Abstandhaltern (Typ 1):<br>Innenwand-Endelemente, Bogenelemente und Bogenanschlusselemente | Anhang A3.2 |



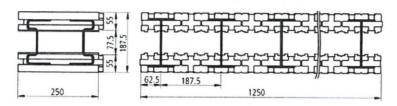




Standard-Schalungselemente mit Draht-Abstandhaltern (Typ 2)
Kernbetondicke 140 mm

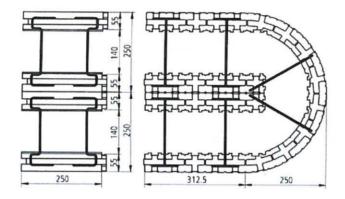
Anhang A4.1



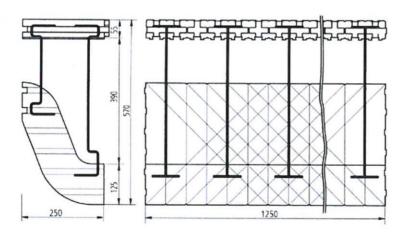





| Тур                 | a [mm] | b [mm] | c [mm] | d [mm] |
|---------------------|--------|--------|--------|--------|
| Typ 2 / 055-203-055 | 55,0   | 202,5  | 55,0   | 312,5  |
| Typ 2 / 055-203-118 | 55,0   | 202,5  | 117,5  | 375,0  |
| Typ 2 / 055-203-180 | 55,0   | 202,5  | 180,0  | 437,5  |
| Typ 2 / 055-203-243 | 55,0   | 202,5  | 242,5  | 500,0  |
| Typ 2 / 055-265-055 | 55,0   | 265,0  | 55,0   | 375,0  |
| Typ 2 / 055-265-118 | 55,0   | 265,0  | 117,5  | 437,5  |
| Typ 2 / 055-265-180 | 55,0   | 265,0  | 180,0  | 500,0  |
| Typ 2 / 055-265-243 | 55,0   | 265,0  | 242,5  | 562,5  |


**ISORAST** 

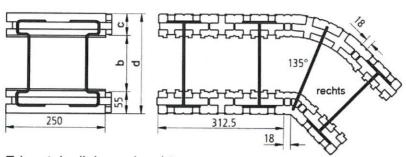
Standard-Schalungselemente mit Draht-Abstandhaltern (Typ 2) Kernbetondicke 202,5 mm und 265 mm Anhang A4.2





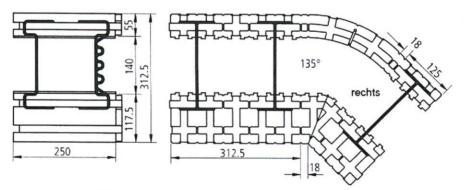

18er-Innenwandstein




25er-Eckrundstein



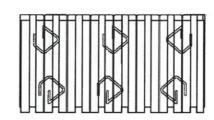
Kragstein


| ISORAST                                                                                                           |             |
|-------------------------------------------------------------------------------------------------------------------|-------------|
| Sonder-Schalungselemente mit Draht-Abstandhaltern (Typ 2):<br>Innenwandelemente, Eckrundelemente und Kragelemente | Anhang A4.3 |

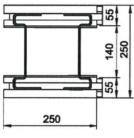




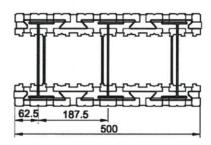
Erkerstein, links und rechts


| Type                | b [mm] | c [mm] | d [mm] |
|---------------------|--------|--------|--------|
| 25er-Erkerstein     | 140,0  | 55,0   | 250,0  |
| 31er-Erkerstein     | 140,0  | 117,5  | 312,5  |
| 37er-Erkerstein     | 140,0  | 180,0  | 375,0  |
| 43er-Erkerstein     | 140,0  | 242,5  | 437,0  |
| 31er/202-Erkerstein | 202,5  | 55,0   | 312,5  |
| 37er/202-Erkerstein | 202,5  | 117,5  | 375,0  |
| 43er/202-Erkerstein | 202,5  | 180,0  | 437,5  |



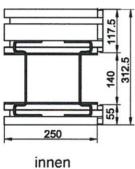

31er-Innen-Erkerstein, links und rechts

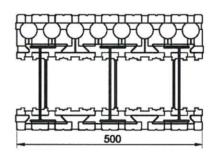
| ISORAST                                                                     |             |
|-----------------------------------------------------------------------------|-------------|
| Sonder-Schalungselemente mit Draht-Abstandhaltern (Typ 2):<br>Erkerelemente | Anhang A4.4 |






# außen





innen



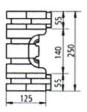
25er-Schalldämmstein

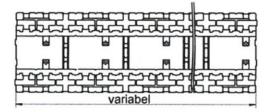
### außen





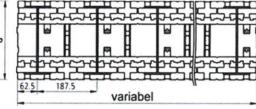
31er-Schalldämmstein


ohne Maßstab, alle Maße in [mm]

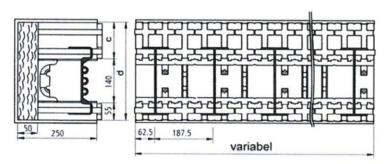

**ISORAST** 

Schalungselemente mit erhöhter Schalldämmung

Anhang A5






25er-Innentürsturz



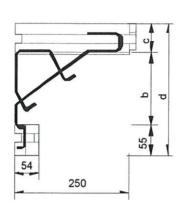


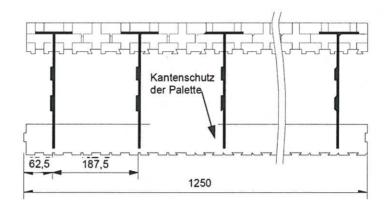
Sturzstein



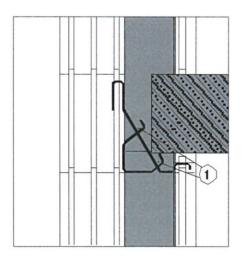
Sturzstein "S"

| Type                | c [mm] | d [mm] |  |
|---------------------|--------|--------|--|
| 25er-Sturzstein     | 55,0   | 250,0  |  |
| 31er-Sturzstein     | 117.5  | 312,5  |  |
| 31er-Sturzstein "S" | 117,5  |        |  |
| 37er-Sturzstein     | 100.0  | 075.0  |  |
| 37er-Sturzstein "S" | 180,0  | 375,0  |  |
| 43er-Sturzstein     | 040.5  | 437,0  |  |
| 43er-Sturzstein "S" | 242,5  |        |  |


**ISORAST** 


Sonderelemente:

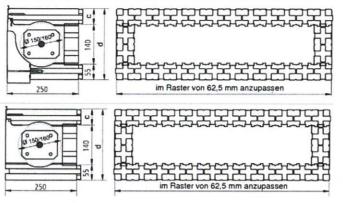
Innentürsturzelemente und Sturzelemente


Anhang A6








| Тур                           | b [mm] | c [mm] | d [mm] |
|-------------------------------|--------|--------|--------|
| 25er-Deckenabschlussstein     | 140,0  | 55,0   | 250,0  |
| 31er-Deckenabschlussstein     | 140,0  | 117,5  | 312,5  |
| 37er-Deckenabschlussstein     | 140,0  | 180,0  | 375,0  |
| 43er-Deckenabschlussstein     | 140,0  | 242,5  | 437,5  |
| 31er/202-Deckenabschlussstein | 202,5  | 55,0   | 312,5  |
| 37er/202-Deckenabschlussstein | 202,5  | 117,5  | 375,0  |
| 43er/202-Deckenabschlussstein | 202,5  | 180,0  | 437,5  |
| 50er/202-Deckenabschlussstein | 202,5  | 242,5  | 500,0  |



Seitenansicht des Deckenabschlusselements

| ISORAST                 |           |
|-------------------------|-----------|
| Sonderelemente:         | Anhang A7 |
| Deckenabschlusselemente |           |





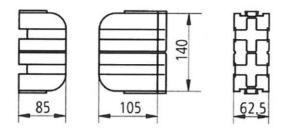

Rollladenkasten "Ri" (Innenrevision)

Rollladenkasten "Ra" (Außenrevision)

| Тур                              | c [mm] | d [mm] | Innendurchmesser [mm] |
|----------------------------------|--------|--------|-----------------------|
| 25er-Rollladenkasten "Ri", ø 150 | 55.0   | 050.0  | 150.0                 |
| 25er-Rollladenkasten "Ra", ø 150 | 55,0   | 250,0  | 150,0                 |
| 31er-Rollladenkasten "Ra", ø 150 | 117,5  | 312,5  |                       |
| 37er-Rollladenkasten "Ra", ø 160 | 180,0  | 375,0  | 160,0                 |
| 43er-Rollladenkasten "Ra", ø 160 | 242,5  | 437,5  |                       |

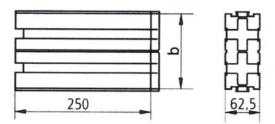


Rollladenkasten "Ri" (Innenrevision)


Rollladenkasten "Ra" (Außenrevision)

| Туре                             | c [mm] | d [mm] | Innendurchmesser [mm] |
|----------------------------------|--------|--------|-----------------------|
| 31er-Rollladenkasten "Ri", ø 190 | EE 0   | 010 5  |                       |
| 31er-Rollladenkasten "Ra", ø 190 | 55,0   | 312,5  |                       |
| 37er-Rollladenkasten "Ri", ø 190 | 100.0  | 275.0  | 100.0                 |
| 37er-Rollladenkasten "Ra", ø 190 | 180,0  | 375,0  | 190,0                 |
| 43er-Rollladenkasten "Ri", ø 190 | 242.5  | 427 E  |                       |
| 43er-Rollladenkasten "Ra", ø 190 | 242,5  | 437,5  |                       |

| ISORAST                                    |           |
|--------------------------------------------|-----------|
| Sonderelemente:<br>Rollladenkastenelemente | Anhang A8 |




Typ 1: mit EPS-Stegen

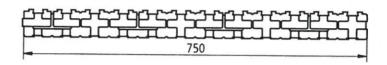


Typ 1 / 140er-Endstück

Typ 2: mit Draht-Stegen



Type 2 / Endstück


| Тур                    | b [mm] |
|------------------------|--------|
| Typ 2 / 77er-Endstück  | 77,5   |
| Typ 2 / 140er-Endstück | 140,0  |
| Typ 2 / 202er-Endstück | 202,5  |
| Typ 2 / 265er-Endstück | 265,0  |

Zubehörteile:
Endstücke mit EPS-Abstandhaltern (Typ 1) bzw. Draht-Abstandhaltern (Typ 2)

Anhang A9







## Höhenausgleich

| Тур                 | c [mm] |  |
|---------------------|--------|--|
| Höhenausgleich      | 55,0   |  |
| 43er-Höhenausgleich | 242,5  |  |





## Erker-/Eckrundstein-Höhenausgleich

| Тур                                    | c [mm] |  |
|----------------------------------------|--------|--|
| 25er-Erker/Eckrundstein-Höhenausgleich | 55,0   |  |
| 31er-Erker-Höhenausgleich              | 117,5  |  |
| 37er-Erker-Höhenausgleich              | 180,0  |  |
| 43er-Erker-Höhenausgleich              | 242,5  |  |

nicht maßstäblich, alle Maße in [mm]

| ISORAST                                                                                             |            |
|-----------------------------------------------------------------------------------------------------|------------|
| Zubehörteile: gerade Höhenausgleichsstücke und Höhenausgleichsstücke für Erker- und Eckrundelemente | Anhang A10 |



#### Einbau

### 1. Allgemeines

Der Hersteller hat sicherzustellen, dass die mit der Planung und Durchführung betrauten Personen die in den Abschnitten 1, 3 und diesem Anhang formulierten Anforderungen zur Kenntnis genommen haben. Die Montageanleitung wird beim Deutschen Institut für Bautechnik verwahrt und muss auf jeder Baustelle zur Verfügung stehen. Sind in den Anweisungen des Herstellers Regelungen enthalten, die von den hier angegebenen abweichen, gelten die Regelungen der ETA.

Nach der Montage der Schalungselemente (siehe Abschnitt 1.) wird Baustellenbeton oder Transportbeton eingebracht und verdichtet (siehe Abschnitt 2.).

Unter Endnutzungsbedingungen entstehen Betonwände des Gittertyps bzw. des scheibenartigen Typs² (siehe Abschnitt 3.1.1) aus unbewehrtem oder bewehrtem Beton gemäß EN 1992-1-1 bzw. entsprechender nationaler Regelungen.

Für die Tragwerksbemessung sind die Wanddicke und die Berechnungsgewichte pro m² ohne Putz in Anhang B8 angegeben.

Unter Endnutzungsbedingungen bilden die EPS-Schalungswandungen den Hauptbestandteil der Wärmedämmung der Wände.

Die Bemessungswerte der Wärmedurchlasswiderstände bzw. die Bemessungswerte der Wärmeleitfähigkeiten sind entsprechend nationalen Regelungen festzulegen.

## 2. Montage der Schalungselemente

Die Schalungselemente werden vor Ort schichtweise und ohne Mörtel oder Kleber zusammengesteckt. Um stabile geschosshohe Schalungen zu erhalten, werden die vertikalen Fugen zwischen zwei Elementen einer Schicht um mindestens ein Viertel der Elementlänge, besser um die Hälfte der Elementlänge gegenüber den vertikalen Fugen der vorherigen und der nächsten Schicht versetzt angeordnet (siehe Anhänge B4 und B5).

Weiterhin ist darauf zu achten, dass bei der Errichtung von Wänden aus Schalungselementen mit EPS-Abstandhaltern (Typ 1), die übereinander liegenden Abstandhalter stets in einer vertikalen Ebene liegen.

Zunächst werden zwei Schichten des gesamten Grundrisses gemäß der Montageanleitung des Herstellers zusammen gesteckt.

Danach wird die Ausrichtung zum Untergrund vorgenommen (Fundament, Bodenplatte, Erdgeschoss und Deckenelemente). Eventuell auftretende Hohlräume zwischen den EPS-Schalungswandungen und dem unebenen Untergrund sind vor der Betonverfüllung mit PU-Schaum zu versiegeln.

Im Anschluss sind die Schalungselemente auf Geschosshöhe zu stecken, auszurichten und an den Montagestützen entsprechend der Montageanleitung des Herstellers zu befestigen (siehe Anhang B7).

Die Montagestützen sind in einem maximalen Abstand von 1,50 m aufzustellen, wobei sie entlang der gesamten Wand an den Schalungselementen und am Boden zu befestigen sind (siehe Anhang B7).

Die sich aus der statischen Berechnung ergebende erforderliche Bewehrung ist gemäß den Anweisungen der Montageanleitung, die vom Hersteller zur Verfügung gestellt wird in geeigneter Weise anzuordnen.

Rechtwinklige Ecken und typische Wandverbindungen sind für Schalungselemente mit EPS-Abstandhaltern (Typ 1) gemäß Anhang B4 und für Schalungselemente mit Draht-Abstandhaltern (Typ 2) gemäß Anhang B5 herzustellen.

Weitere Informationen sind in der Montageanleitung gegeben.

### 3. Betonierarbeiten

-i-b- FTAO 000 Ab--b-10 0 0

Für die Herstellung von Normalbeton gilt EN 206. Das Ausbreitmaß von Beton, der durch Rütteln verdichtet wird, muss mindestens innerhalb des unteren Bereichs der Ausbreitmaßklasse F3, und der durch Stochern verdichtet wird, mindestens innerhalb des oberen Bereichs der Ausbreitmaßklasse F3 liegen.

| siene ETAG 009, Abschnitt 2.2 |                            |
|-------------------------------|----------------------------|
| ISORAST                       |                            |
| Einbau                        | Anhang B1<br>Seite 1 von 3 |



Das Größtkorn der Gesteinskörnung muss mindestens 8 mm betragen und darf 16 mm nicht überschreiten.

Weiterhin muss der Beton eine schnelle bis mittlere Festigkeitsentwicklung gemäß EN 206, Tabelle 16 aufweisen.

Das Einbringen des Betons darf ausschließlich von Personen durchgeführt werden, die in die Arbeiten und den fachgerechten Umgang mit dem Schalungssystem eingewiesen wurden.

Das Einbringen des Betons soll in Lagen von maximal 0,75 m erfolgen mit einer maximalen Betoniergeschwindigkeit von 1 m/h.

Für den Fall, dass nationale Regelungen fehlen, sind die folgenden Anweisungen zu beachten:

Horizontale Arbeitsfugen sind vorzugsweise in Geschosshöhe vorzusehen. Bei Arbeitsfugen zwischen zwei Geschossen müssen vertikale Bewehrungsstäbe als Anschlussbewehrung angeordnet werden. Die Anschlussbewehrung muss die folgenden Anforderungen erfüllen:

- Zwei nebeneinander liegende Stäbe der Anschlussbewehrung dürfen nicht in derselben Ebene parallel zur Wandoberfläche liegen.
- Der Abstand zwischen zwei Stäben der Anschlussbewehrung muss mindestens 10 cm betragen und darf nicht größer als 50 cm sein.
- Die Gesamtquerschnittsfläche der Stäbe der Anschlussbewehrung darf nicht kleiner als 1/2000 der Querschnittsfläche des Betons sein.
- Die Verankerungstiefe der Stäbe der Anschlussbewehrung muss auf beiden Seiten der Arbeitsfuge mindestens 20 cm betragen.

Vor dem weiteren Betonieren sind Zementschlämme und losgelöste Betonrückstände zu entfernen und die Arbeitsfugen ausreichend anzufeuchten. Beim Betonieren ist darauf zu achten, dass die Oberfläche des älteren Betons noch leicht feucht ist, damit der neu eingebrachte Beton sich gut mit dem älteren Beton verbindet.

Sind keine Arbeitsfugen vorgesehen, so darf das Betonieren in Schichten nur unterbrochen werden, solange die zuletzt eingebrachte Schicht noch nicht erstarrt ist und somit ein guter und gleichmäßiger Verbund zwischen den beiden Betonschichten möglich wird. Wenn Innenrüttler zum Einsatz kommen, ist darauf zu achten, dass die Rüttelflasche noch bis in die untere, bereits verdichtete Betonschicht eindringen kann.

Der Beton darf nur bis zu einer Höhe von 2 m frei fallen, ab dieser Höhe ist er durch Schüttrohre oder Betonierschläuche mit einem maximalen Durchmesser von 100 mm zusammenzuhalten und bis kurz vor die Füllstelle heranzuführen.

Schüttkegel sind zu vermeiden, indem geringe Abstände zwischen den Füllstellen gewählt werden.

Bei der Planung müssen genügend Zwischenräume in der Bewehrung für Betonierschläuche und Schüttrohre vorgesehen werden.

Nach dem Betonieren dürfen die Wände nicht mehr als 5 mm pro laufenden Meter Wandhöhe von der Lotlinie abweichen.

Die Decke darf erst auf die mit Schalungselementen gefertigten Wände aufgelegt werden, wenn der Kernbeton ausreichend fest ist.

## 4. Leitungen und Durchführungen in Wänden

Horizontal verlaufende Durchführungen sind entsprechend der Montageanleitung des Herstellers zu montieren und bei der Bemessung der Wand zu berücksichtigen.

Horizontal im Inneren des Kernbetons verlaufende Leitungen sind zu vermeiden. Wenn sie dennoch erforderlich werden, sind sie bei der Bemessung der Wand zu berücksichtigen.

Ebenso sind vertikal durch den Kernbeton verlaufende Leitungen zu berücksichtigen, wenn ihr Durchmesser 1/6 der Dicke des Kernbetons überschreitet und der Abstand der Rohre kleiner als 2 m ist.

| ISORAST |                            |
|---------|----------------------------|
| Einbau  | Anhang B1<br>Seite 2 von 3 |
|         | 9                          |



### 5. Nacharbeiten und Wand-Bekleidungen und -Deckschichten

Wände des Typs "ISORAST" sind mit Deckschichten (z. B. Putz, Wandverkleidungen, Beschichtungen) zu schützen. Deckschichten sind nicht Bestandteil des Schalungsbausatzes und werden deshalb in dieser ETA nicht betrachtet. Für Außenflächen werden Putzbekleidungssysteme empfohlen, die die in ETAG 004 formulierten Anforderungen erfüllen. Wand-Bekleidungen bzw. deren Unterkonstruktion sind im Kernbeton zu verankern. Die Putzarbeiten sind entsprechend den geltenden nationalen Regelungen auszuführen.

Auf Grund der schädigenden Einflüsse aus Witterung und UV-Einstrahlung sollten Deckschichten zum Schutz der Oberfläche der EPS-Schalungswandungen vorzugsweise innerhalb eines Monats nach Errichtung der tragenden Konstruktion aufgebracht werden.

### 6. Befestigung von Gegenständen

Die Befestigung von Gegenständen an den EPS-Schalungswandungen ist nicht möglich. Die für die mechanische Festigkeit relevanten Teile der Befestigungen müssen sich im Kernbeton befinden. Der Einfluss von Befestigungen auf die Reduzierung des Nennwertes des Wärmedurchlasswiderstandes  $R_{\rm D,element}$  ist entsprechend EN ISO 6946 zu berücksichtigen.

| ISORAST |                            |
|---------|----------------------------|
| Einbau  | Anhang B1<br>Seite 3 von 3 |
|         |                            |



| Normen u<br>Leitlinien | nd       | Fassung              | Titel                                                                                                                                                                                                                              |
|------------------------|----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN                     | 206      | 2013+A1:2016         | Beton – Festlegung, Eigenschaften, Herstellung und Konformität                                                                                                                                                                     |
| EN                     | 1992-1-1 | 2004+AC:2010+A1:2014 | Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau                                                                                 |
| EN                     | 13163    | 2012+A2:2016         | Wärmedämmstoffe für Gebäude -<br>Werkmäßig hergestellte Produkte aus expandiertem<br>Polystyrol (EPS) - Spezifikation                                                                                                              |
| EN                     | 13501-1  | 2007 + A1:2009       | Klassifizierung von Bauprodukten und Bauarten zu ihrem<br>Brandverhalten - Teil 1: Klassifizierung mit den<br>Ergebnissen aus den Prüfungen zum Brandverhalten von<br>Bauprodukten                                                 |
| EN                     | 13501-2  | 2016                 | Klassifizierung von Bauprodukten und Bauarten zu ihrem<br>Brandverhalten - Teil 2: Klassifizierung mit den<br>Ergebnissen aus den Feuerwiderstandsprüfungen, mit<br>Ausnahme von Lüftungsanlagen                                   |
| EN ISO                 | 717-1    | 2013                 | Akustik - Bewertung der Schalldämmung in Gebäuden und von Bauteilen - Teil 1:<br>Luftschalldämmung                                                                                                                                 |
| EN ISO                 | 6946     | 2017                 | Bauteile - Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient - Berechnungsverfahren                                                                                                                                          |
| EN ISO                 | 10456    | 2007 + AC:2009       | Baustoffe und Bauprodukte - Wärme- und feuchte-<br>technische Eigenschaften -<br>Tabellierte Bemessungswerte und Verfahren zur<br>Bestimmung der wärmeschutztechnischen Nenn- und<br>Bemessungswerte                               |
| EN ISO                 | 13788    | 2001                 | Wärme- und feuchtetechnisches Verhalten von Bauteilen<br>und Bauelementen -<br>Raumseitige Oberflächentemperatur zur Vermeidung<br>kritischer Oberflächenfeuchte und Tauwasserbildung im<br>Bauteilinneren - Berechnungsverfahren  |
| ETAG                   | 004      | 2011                 | Leitlinie für die europäische technische Zulassung für<br>außenseitige Wärmedämm-Verbundsysteme mit<br>Putzschicht                                                                                                                 |
| ETAG                   | 009      | 2002-06              | Leitlinie für die europäische technische Zulassung für<br>nicht lasttragende verlorene Schalungsbausätze/-systeme<br>bestehend aus Schalungs-/ Mantelsteinen oder<br>-elementen aus Wärmedämmstoffen und - mitunter - aus<br>Beton |

| ISORAST                                     |           |
|---------------------------------------------|-----------|
| Liste der verwendeten Normen und Leitlinien | Anhang B2 |
|                                             |           |



### Hinweise zur Bestimmung des Nennwertes des Wärmedurchlasswiderstands unter Endnutzungsbedingungen (mit Beton, ohne Putz)

Die Berechnung des Nennwertes des Wärmedurchlasswiderstandes der EPS-Schalungswandungen  $R_{\text{D,EPS}}$  erfolgt gemäß EN ISO 6946. Für den Nennwert der Wärmeleitfähigkeit des EPS  $\lambda_{\text{EPS}}$  ist dabei der Wert nach Abschnitt 3.6.1 zu verwenden. Für die Wärmeleitfähigkeit des Betons  $\lambda_{\text{concrete}}$  ist der Wert aus EN ISO 10456, Tabelle 3 zu entnehmen. Dabei ist die Rohdichte des verwendeten Betons zu berücksichtigen.

Unter Berücksichtigung der für das System "ISORAST" möglichen Inhomogenität (geringere Wärmeleitfähigkeit der EPS-Stege gegenüber dem Beton für Typ 1 bzw. höhere Wärmeleitfähigkeit der Draht-Abstandhalter als der Beton für Typ 2) ergeben sich Erhöhungs- (Typ 1) und Reduktionsfaktoren (Typ 2) gegenüber einer Berechnung mit homogenen Schichten.

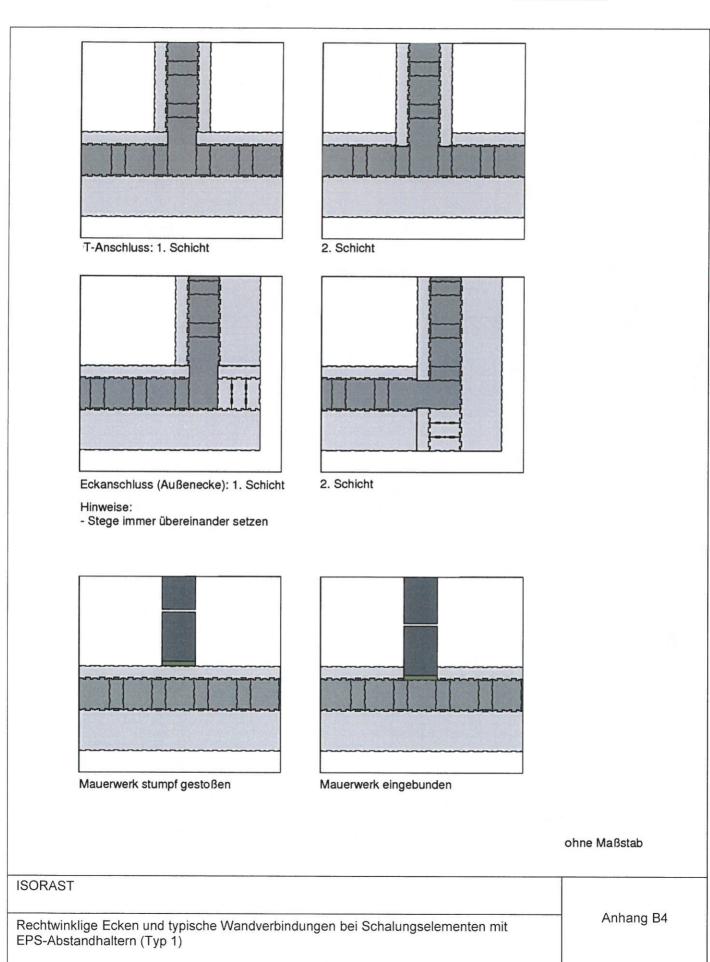
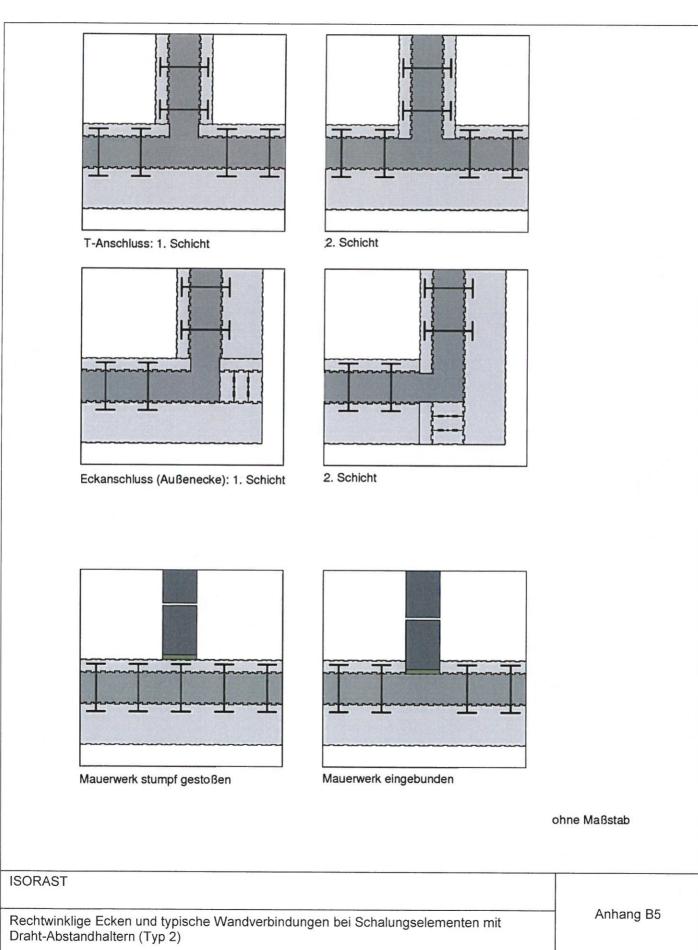
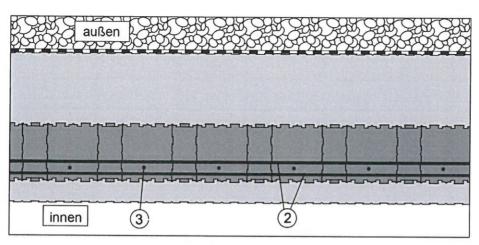

In Tabelle 1 sind diese Faktoren für einen Kernbeton ohne Bewehrung mit einer Rohdichte  $\rho$  = 2000 kg/m³ angegeben. Die entsprechende Wärmeleitfähigkeit nach EN ISO 10456, Tabelle 3 für diesen Beton beträgt  $\lambda_{\text{concrete}}$  = 1,35 W/(m K). Der Putz blieb bei diesen Berechnungen unberücksichtigt.

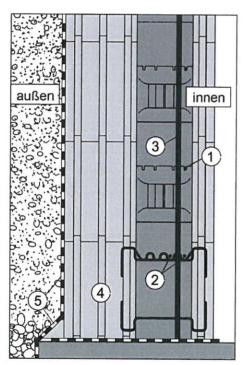
Tabelle 1: Nennwert des Wärmedurchlasswiderstandes  $R_{\text{D,element}}$  der Schalungselemente unter Endnutzungsbedingungen (mit Kernbeton ohne Bewehrung der Rohdichte  $\rho$  = 2000 kg/m³ und einer Wärmeleitfähigkeit nach EN ISO 10456, Tabelle 3 von  $\lambda_{\text{concrete}}$  = 1,35 W/(m K), ohne Putz) in Abhängigkeit von der Dicke der äußeren EPS-Schalungswandungen. Die Erhöhungs- (bei Schalungselementen mit EPS-Stegen) bzw. Reduktionsfaktor (bei Schalungselementen mit Draht-Abstandhaltern) gegenüber einer Berechnung mit homogenen Schichten sind in der letzten Spalter angegeben.


| Abstandhaltertyp<br>(Abstandhalter-<br>material)<br>der Schalungs-<br>elemente | Kernbeton-<br>dicke | u.cnd.ingen |        | Nennwert des<br>Wärmedurchlass-<br>widerstands | Erhöhungs- bzw.<br>Reduktions-<br>faktor |  |
|--------------------------------------------------------------------------------|---------------------|-------------|--------|------------------------------------------------|------------------------------------------|--|
|                                                                                |                     |             |        | R <sub>D,element</sub>                         |                                          |  |
| 0.0                                                                            | [mm]                | [mm]        | [mm]   | [(m²×K) / W]                                   |                                          |  |
| Typ 1 (EPS)                                                                    | 140,0               |             | 55.0   | 3,49                                           | 1,025                                    |  |
| Typ 2 (Draht)                                                                  | 140,0               |             | 55,0   | 2,88                                           | 0,845                                    |  |
| Typ 1 (EPS)                                                                    | 140,0               |             | 447.5  | 5,44                                           | 1,015                                    |  |
| Typ 2 (Draht)                                                                  | 140,0               | 55.0        | 117,5  | 4,85                                           | 0,905                                    |  |
| Typ 1 (EPS)                                                                    | 140,0               | 55,0        |        | 7,40                                           | 1,010                                    |  |
| Typ 2 (Draht)                                                                  | 202,5               |             | 180,0  | 6,80                                           | 0,930                                    |  |
| Typ 1 (EPS)                                                                    | 140,0               |             | 0.40.5 | 9,35                                           | 1,005                                    |  |
| Typ 2 (Draht)                                                                  | 265,0               |             | 242,5  | 8,76                                           | 0,945                                    |  |

Falls relevant, hat der Planer die Systembauteile aus Metall als Wärmebrücken bei der Bestimmung des Wärmedurchlasswiderstandes  $R_{\text{D,element}}$  zu berücksichtigen.


| ISORAST                                                |           |
|--------------------------------------------------------|-----------|
| Hinweise zur Bestimmung des Wärmedurchlasswiderstandes | Anhang B3 |
|                                                        |           |









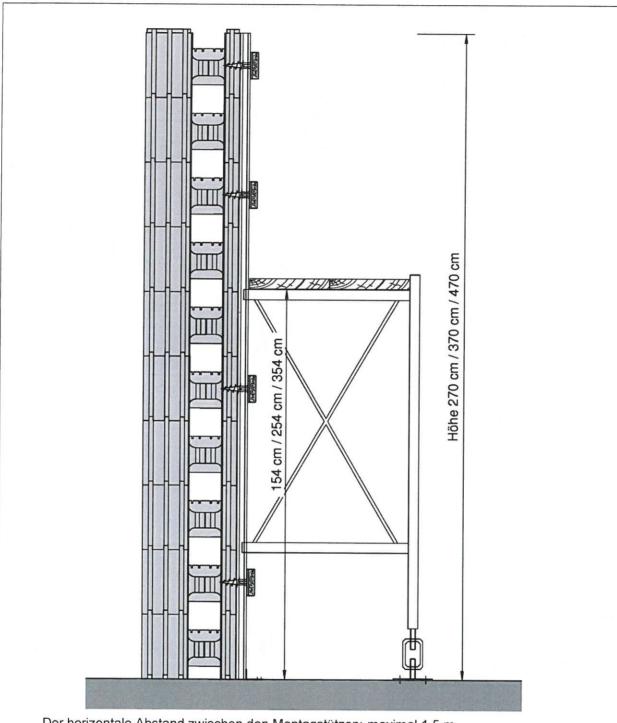



Horizontalschnitt einer Keller-Außenwand mit Bewehrungsanordnung entsprechend den statischen Berechnungen



Vertikalschnitt

- 1) Querbewehrung, entsprechend der Statik
- 2 Querbewehrung in der 1., 5. und letzten Reihe doppelt zur Lagesicherung
- Senkrechte Bewehrung entsprechend der Statik
- 4 1. Reihe mit Draht-Stegen
- (5) Außenwandabdichtung


ohne Maßstab

**ISORAST** 

Mögliche Bewehrungsanordnung bei Keller-Außenwänden mit Schalungselementen mit EPS-Abstandhaltern (Typ 1) bzw. Draht-Abstandhaltern (Typ 2)

Anhang B6





Der horizontale Abstand zwischen den Montagstützen: maximal 1,5 m

| ISORAST                  |           |
|--------------------------|-----------|
| Montierte Montagestützen | Anhang B7 |



|               | Тур           | gemäß Anhang | Wanddicke | Kernbetondicke | Kernbetonfläche<br>pro Ifd Meter Wandlänge | Berechnungsgewicht der<br>Schalungselemente ohne Putz<br>PEPS = 30 kg/m³ | Berechnungsgewicht der Schalungs-<br>elemente unter Endnutzungsbedingungen<br>(mit Kernbeton ohne Putz) p <sub>Beton</sub> = 2500 kg/m³ | Riegelfläche<br>A <sub>R</sub> |
|---------------|---------------|--------------|-----------|----------------|--------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|               |               |              | [cm]      | [cm]           | [m²/m]                                     | [kN/m²]                                                                  | [kN/m²]                                                                                                                                 | [cm²]                          |
| =             | 25 cm-Element |              | 25,00     | 14,00          | 0,0933                                     | 0,038                                                                    | 3,12                                                                                                                                    | 154                            |
| (Typ          | 31 cm-Element | - A3         | 31,25     |                | 0,0933                                     | 0,057                                                                    | 3,14                                                                                                                                    | 154                            |
| EPS (Typ 1)   | 37 cm-Element | 1 /10        | 37,50     |                | 0,0933                                     | 0,076                                                                    | 3,15                                                                                                                                    | 154                            |
|               | 43 cm-Element |              | 43,75     |                | 0,0933                                     | 0,094                                                                    | 3,17                                                                                                                                    | 154                            |
|               | 25 cm-Element |              | 25,00     | 14,00          | 0,1363                                     | 0,064                                                                    | 3,56                                                                                                                                    |                                |
|               | 31 cm-Element |              | 31,25     |                | 0,1363                                     | 0,083                                                                    | 3,58                                                                                                                                    |                                |
|               | 37 cm-Element |              | 37,50     |                | 0,1363                                     | 0,102                                                                    | 3,60                                                                                                                                    |                                |
|               | 43 cm-Element |              | 43,75     |                | 0,1363                                     | 0,120                                                                    | 3,62                                                                                                                                    |                                |
| (2)           | 055-203-055   |              | 31,25     | 20,25          | 0,1988                                     | 0,068                                                                    | 5,13                                                                                                                                    |                                |
| Draht (Typ 2) | 055-203-118   |              | 37,50     |                | 0,1988                                     | 0,087                                                                    | 5,15                                                                                                                                    |                                |
| aht (         | 055-203-180   | A4           | 43,75     |                | 0,1988                                     | 0,106                                                                    | 5,17                                                                                                                                    |                                |
| ۵             | 055-203-243   |              | 50,00     |                | 0,1988                                     | 0,124                                                                    | 5,19                                                                                                                                    |                                |
|               | 055-265-055   |              | 37,50     | 26,50          | 0,2613                                     | 0,072                                                                    | 6,70                                                                                                                                    |                                |
|               | 055-265-118   |              | 43,75     |                | 0,2613                                     | 0,091                                                                    | 6,72                                                                                                                                    |                                |
|               | 055-265-180   |              | 50,00     |                | 0,2613                                     | 0,110                                                                    | 6,74                                                                                                                                    |                                |
|               | 055-265-243   |              | 56,25     |                | 0,2613                                     | 0,128                                                                    | 6,76                                                                                                                                    |                                |

ISORAST

Wanddicken und Berechnungsgewichte pro m² der Standard-Schalungselemente

Anhang B8